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ABSTRACT

Geostatistical-simulation techniques are increasingly being used to create

heterogeneous realizations for flow modeling and to assess uncertainty in

hydrocarbon resources and reserves. These geostatistical-simulation techniques

reproduce the input statistics within ergodic fluctuations. The input statistics

representing various model parameters must be computed from data that are

representative of the entire domain being modeled. Geostatistical simulation

does not accommodate a lack of representativeness in the data. Moreover, the

extent to which the input statistics are reproduced depends almost exclusively

on the size of the modeling domain relative to the range of spatial correlation;

fluctuations in realizations of the full reservoir model do not depend entirely on

the uncertainty of the input statistics. It is necessary to explicitly incorporate the

uncertainty of the input statistics because they have a much larger and more

realistic impact on the uncertainty of the full reservoir model than stochastic

fluctuations. The best practices for determining representative input values of

model parameters and quantification of their uncertainty are presented in this

chapter.
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INTRODUCTION

The combinatorial space of uncertainty in reser-

voir modeling is inconceivably vast. Local well data

measure less than one trillionth of a typical reservoir

volume. Seismic data provide excellent coverage, but

its scale of measurement is very large, and it must

be calibrated to reservoir properties using limited

well data. Reservoir models are commonly not ade-

quately constrained by local well data. The choice

of a geostatistical modeling approach and the val-

ues specified for the associated input model param-

eters provide the most significant constraints on the

modeling results. It is essential that the input sta-

tistics be representative of the entire domain being

modeled.

Histograms and other statistical characteristics

must be assembled from the local well data and

commonly supplemented by outcrop studies and

analog field data. However, wells are not drilled to

be statistically representative, and core data are not

always taken uniformly from good- and poor-quality

reservoir rock. The geostatistical modeler must take

great care to assemble values of the model param-

eters that are derived from representative data.

Impact of the Histogram

To demonstrate the importance of adequately

specifying the input histogram of a reservoir prop-

erty such as porosity, consider the four wells shown

in Figure 1. These wells are located in the North

Cowden field in west Texas, where 62 wells have been

drilled (the data were kindly provided by Amoco

Oil Company, now part of British Petroleum, as an

industry training set for the development of geosta-

tistical methodologies). Porosity is given in units of

percent averaged over the vertical thickness of the

reservoir. The histogram on the right side of Figure 1

characterizes the vertical average of porosity for the

62 wells. The four wells have been randomly chosen

to provide realistic local conditioning for the geosta-

tistical realizations of porosity.

Note that the observed porosity distribution ap-

pears to be bimodal (see right of Figure 1). This indi-

cates the presence of two distinct facies types: dolo-

mite and siltstone. In practice, the two facies should

be treated independently; however, this needs not

be done for the purpose of the present discussion.

The mean of the vertical average porosity (hence-

forth referred to as average porosity) of the 62 wells

is 8.4%. Two realizations constructed with sequen-

tial Gaussian simulation using the reference (base

case) histogram and the four wells as conditioning

data are shown in the center of Figure 2. An iso-

tropic semivariogram is used to fit the experimental

normal-scores semivariogram of the set of 62 wells

based on a spherical model with a range of 3000 ft

(914 m). The histogram in the top center is the ob-

served base case histogram of average porosity. The

histogram in the bottom center characterizes the re-

sulting distribution of pore volume over 101 reali-

zations. The units of pore volume are millions of

cubic feet, assuming an average reservoir thickness

of 10 ft (3 m). Note the uncertainty in pore volume

caused by fluctuations among the realizations.

Considerable uncertainty exists with regard to the

true distribution of average porosity. Consider three

estimates of the distribution of average porosity,

with associated means of 7.5, 8.4, and 10%. These

estimated distributions are shown on the top of

Figure 2. Each of these estimated distributions were

applied as reference distributions to calculate 101

realizations with sequential Gaussian simulation (two

realizations of each case are shown in Figure 2). Al-

though all 101 realizations are constrained to the

Figure 1. The locations
of all 62 wells in North
Cowden field and four
randomly selected wells
(colored dots), along with
the observed distribu-
tion of average vertical
porosity (in percent)
for all wells.
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data in the four wells shown in Figure 1, the esti-

mated porosity distribution has a first-order impact

on the estimate of pore volume. A low case is shown

on the left of Figure 2. This case represents an 11%

reduction in mean average porosity, which translates

to a 5% reduction in mean pore volume compared to

the base case (the histogram of pore volume resulting

from the 101 realizations is shown in the lower left of

Figure 2). The right side of Figure 2 shows the high

case based on a mean average porosity of 10%. The

histogram of pore volume resulting from 101 reali-

zations is shown in the lower right of Figure 2. The

small number of wells and the relatively large range

of correlation dampen the effect of the change in mean

porosity (20%); the mean pore volume increases by

10% compared to the base case.

This example demonstrates the effect that esti-

mates of model parameters can have on the ultimate

estimates of reservoir performance or capacity, such

as total pore volume or in-place reserves. In this ex-

ample, the impact of the observed or empirical histo-

gram of average porosity would have been even more

dramatic if the correlation range had been shorter;

in geostatistical simulation, the entire emphasis is

placed on the histogram beyond the range of cor-

relation among the wells.

The performance of geostatistical simulation mod-

els is directly controlled by the input statistics. Im-

precision in these values is directly imputed to the

simulation results, and decisions based on such reali-

zations may be ill informed. Determining the best esti-

mates of model parameters is of first-order importance.

Geostatistical simulation algorithms reproduce the

inputs in ergodic statistical fluctuations. These sta-

tistical fluctuations depend almost entirely on the size

of the study area relative to the range of correlation;

they do not depend on the uncertainty in the inputs.

Such uncertainty must be explicitly treated outside

the simulation algorithm because the inputs them-

selves can be statistics computed for purposes of es-

timating model or algorithm parameters. These con-

cepts are illustrated below.

Effect of the Domain Size

The effect of domain size on statistical fluctua-

tions in the input histogram is demonstrated with the

same four wells shown in Figure 1. Three different

Figure 2. Three input
distributions (low, base,
and high cases) of av-
erage vertical porosity,
two example realiza-
tions of a geostatistical
model of average ver-
tical porosity, gener-
ated with sequential
Gaussian simulation
conditioned to the four
sampled wells, based
on each distribution,
and the resulting dis-
tributions of pore vol-
ume (million cubic
feet assuming an aver-
age reservoir thickness
of 10 ft [3 m]) compiled
from 101 realizations
generated for each
case.
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domain sizes are considered: area 1 (8000 � 7000),

area 2 (16,000 � 15,000), and area 3 (24,000 � 23,000)

(all units are in feet). The locations of the four wells

and the nested domains are shown in Figure 3. The

semivariogram model was held constant as a single,

isotropic spherical structure with a range of 3000 ft

(914 m) and with no nugget effect. The reference

(base-case) distribution was considered as the input

histogram for all cases. Thus, all parameters are held

constant except for the size of the modeling domain.

The histograms for three example realizations are

shown for each domain size, with histograms from

area 1 in the left column, area 2 in the center column,

and area 3 in the right column of Figure 4.

To illustrate the statistical fluctuations between

realizations, the mean porosity of each realization

was calculated, and the histograms of the means are

shown for 101 realizations for each domain. The means

associated with the smallest domain size, area 1, have

a standard deviation of 0.69, whereas those for area 2

have a standard deviation of 0.41. This represents a

20% decrease in variability in the mean caused by

increasing the domain by a factor of 4. The means

associated with area 3 have a standard deviation of

0.35, which represents a 50% decrease in variability

in the mean caused by increasing the domain size by

a factor of 8. The magnitude of variability in mean

porosity between realizations decreases as the do-

main size increases. This is caused by volume vari-

ance relations and is independent of the reliability of

the input statistics.

The need to explicitly account for uncertainty in

input statistics applies to both categorical and con-

tinuous variables. All stochastic facies modeling tech-

niques require the values of input facies proportions

and spatial parameters such as semivariograms or

size distributions to be specified. These values are

almost exactly reproduced regardless of how well

they represent the underlying truth. Moreover, the

accuracy with which they are reproduced depends

on ergodic fluctuations.

Petrophysical properties are modeled in facies as-

sociated with a structural framework. The histogram

and semivariogram for continuous variables, such as

porosity and permeability, are subject to the same

issues of representativeness and ergodicity.

This chapter is divided into two parts: the first

part addresses the need to derive input statistics such

as the histogram and semivariogram from represen-

tative data, whereas the second part addresses the

characterization of uncertainty in input statistic and

the transfer of that uncertainty to realizations of the

full reservoir model.

INPUT STATISTICS AND THE
REPRESENTATIVENESS OF

SAMPLE DATA

Commonly, too little attention is paid to the rep-

resentativeness of the sample data and its impact

on the calculation of input statistics. Many software

packages provide only cursory tools to permit the

modeler to evaluate data quality, establish local varia-

tions in model parameters, and assess uncertainty in

input statistics. For example, the input proportions

of facies are absolutely critical for both static resource

assessment and production forecasts. However, mod-

elers commonly fix them as the naı̈ı̈ve proportions

from well data without consideration of vertical and

areal trends or the possibility that the existing wells

are targeted at high net-to-gross areas of the reservoir.

The reservoir or model parameters considered here

include facies proportions, histograms (or at least the

mean) of continuous variables, correlation coefficients

with secondary data sources, size distributions for

object-based modeling, or semivariograms for cell-

based facies modeling and the assignment of poros-

ity and permeability. Conventional statistical meth-

ods used to estimate such parameters inherently

assume they are stationary. The concept of station-

arity is described below, and ways to ensure data

representativeness are discussed.

Figure 3. The four sampled wells relative to three
nested domains: area 1, area 2, and area 3. The color bar
indicates average vertical porosity.
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STATIONARITY

Stationarity is a property of a geostatistical model

in which the expected value of a particular statistic

S is independent of location:

EfSðuÞg ¼ s; for all u in area A ð1Þ

where u is a location vector, the statistic S could be

the mean, and A is the chosen area of interest such

as a particular facies. All statistical and geostatistical

procedures assume stationarity at the time of mod-

eling. Geological variables, however, commonly ex-

hibit areal and vertical variations that invalidate this

statistical assumption. Stationarity can be relaxed by

working with residuals from a locally varying (or

nonstationary) mean value or using the geological

trend as some form of secondary conditioning data.

Practitioners have become quite creative in work-

ing around stationarity in geostatistical modeling. It

is common to use locally varying proportion or mean

models for facies and for continuous properties like

porosity and permeability. The variance may be grid-

ded and considered locally variable; the directions of

anisotropy and other continuity parameters such as

the semivariogram range or relative nugget effect

may be gridded and used for local control; and the

correlation between multiple variables may be made

locally varying to account for data quality and geo-

logical variability.

Figure 4. The empirical distributions of average vertical porosity based on three realizations generated with sequential
Gaussian simulation for each of the three domains. The distributions of the mean values from 101 realizations over
each of the three domains are shown at the bottom.

AQ3
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A typical method for constructing a local varying

mean or trend model is demonstrated for North

Cowden field (see Figure 5). The trend in the hori-

zontal direction may be calculated as a smooth map

of the vertically averaged porosity data. The vertical

trend may be calculated by a smooth representation

of vertical porosity averaged over horizontal bins.

Care must be taken to account for stratigraphic cor-

relation between wells. The z-coordinate should be

transformed to conform to the stratigraphic corre-

lation prior to calculating the vertical trend.

Horizontal and vertical trends may be merged

into a three-dimensional trend model. By assuming

conditional independence, the following relation may

be applied that ensures that the global mean, as well

as vertical and horizontal trends, are reproduced in

the trend model:

fðx; y; zÞ ¼ fðx; yÞ � fðzÞ
f

ð2Þ

where x, y, and z are horizontal and vertical

coordinates; and $f (with no parenthetical argument)

is the overall average of vertical porosity. Despite

creativity in mapping the values of locally varying

parameters, the inherent property of stationarity is

invoked in the construction of geostatistical models,

and the input statistics will be reproduced. Hence, it is

essential to assemble representative data from which

input statistics can be computed. Methods for im-

proving the representativeness of the sample his-

togram include declustering and debiasing.

DECLUSTERING

Declustering is well documented and widely ap-

plied (Goovaerts, 1997; Isaaks and AQ4Srivastava, 1997;

Deutsch, 2002 ). Common declustering methods

include cell and polygonal declustering. Decluster-

ing methods rely on the weighting of the sample

data to account for spatial representativeness.

All declustering techniques assume that the en-

tire range of the true distribution has been sampled;

that is, the presence of both low and high values is

known and is sampled in varying degrees. Declus-

tering is not effective when the entire range of val-

ues has not been sampled. The weight or influence

of each sample value can be adjusted, but the poten-

tial effect of unsampled values is generally ignored.

The effect of weighting data values is demon-

strated in Figure 6. Note that only the height of the

bars in the histogram changes as the data weights

are adjusted.

The cell declustering technique is the most com-

mon approach. It is insensitive to the location of

the boundary and is simple to apply in three di-

mensions. For these reasons, it is seen as more

robust than polygonal declustering. The essential

idea of cell declustering is to assign a weight, wi, to

each data value that is inversely proportional to

Figure 5. An example horizontal and vertical trend cal-
culated from all 62 wells. Average porosity is given in
percent. Top: the trend in the horizontal may be calcu-
lated by a smooth fit of the vertically averaged data. Bot-
tom: the vertical trend may be calculated using a smooth
representation of porosity averaged over horizontal bins.
Note the use of a stratigraphic z-coordinate 0.0–1.0, in-
dicating a proportional correlation style.
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the product of the number of occupied cells (Lo)

and the number of data in the same cell as datum

i, nc(i):

wi ¼
1

Lo � ncðiÞ
i ¼ 1; . . . ; n ð3Þ

Clearly, the weights assigned by cell declustering

depend on the cell size. If the cell size is set as very

small, then every sample occupies its own cell (nc(i)

is 1 for all data) and the result is equal weighting or

the naı̈ı̈ve sample distribution. If the cell size is very

large, then all samples reside in the same cell (nc(i)

is n for all data), and the result is once again equal

weighting. The spacing between the widely spaced

data or the spacing of an underlying regular grid is

suitable for cell declustering.

When it is difficult to make a choice, a common

procedure is to assign a cell size that maximizes or

minimizes the declustered mean (the declustered

mean is maximized if the data are clustered in low-

valued areas, and it is minimized if the data are

clustered in high-valued areas). This procedure is

applied when the sample values are clearly clustered

in a low or high range. Automatically assigning the

minimizing or maximizing cell size may lead to less

representative results than simply using the original

distribution.

To illustrate the approach, a subset of 37 wells

was selected from the 62 wells in the North Cowden

field. The selection was performed so that the high-

porosity area in the top right of the domain is over-

represented, and the remaining low-porosity zone is

underrepresented (see the top left of Figure 7). The

clustered histogram is shown in the top right of

Figure 7 with a mean porosity of 9.4% that is 12%

higher than the reference mean porosity of 8.4%.

The declustering cell size was chosen such that the

declustered mean was minimized, as shown in the

bottom right of Figure 7. The application of the de-

clustering weights resulted in a histogram with a

mean porosity of 8.4% (see bottom right of Figure 7).

Polygonal declustering is also commonly applied

in a variety of scientific disciplines for the purpose

of correcting clustered data. The method is flexible

and straightforward. The polygonal declustering

technique is based on the construction of polygons

of influence or Voronoi polygons for each of the

sample values. The weight applied to each value is

proportional to the area of its polygon of influence.

The weight assigned to edge values is very sen-

sitive to the boundary location. If the boundary is

located far from the data, then the edge values will

receive a large weight, because the area of their poly-

gons of influence increases. In general, this sensitivity

to the boundary is perceived as a weakness of the

approach, although polygonal declustering is well

suited to two-dimensional settings with well-defined

boundaries or to declustering within facies.

To illustrate this approach, polygonal declustering

was applied to the clustered subset of wells described

above. The well locations and the associated Voronoi

polygons are shown on the left of Figure 8. The re-

sulting polygonal declustering weights were applied

to the clustered histogram (see top right of Figure 8).

The weighted histogram (see right of Figure 8) has a

mean porosity of 8.3% compared to the reference of

8.4% and the clustered mean of 9.4%.

In both examples described above, declustering

performed well because the entire underlying dis-

tribution was sampled, even if not in a represen-

tative manner. If the entire distribution had not been

sampled (a condition referred to as spatial bias), trend

modeling or debiasing would need to have been

considered.

TREND MODELING AND DEBIASING

There may be evidence of geological trends even

if there are inadequate data to apply conventional

declustering techniques. This information may indi-

cate that the sample data are spatially biased. In this

case, declustering weights are not able to correct

Figure 6. The effect of weighting data values. The data
values remain the same, but their relative weights are
modified to consider spatial representativeness. Note that
the naı̈ı̈ve histogram is slightly offset for visibility.
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the distribution for representativeness. Two related

methods (trend modeling and debiasing) can be used

to make the adjustment, both of which rely on soft

or secondary data.

In the presence of a clear and persistent trend,

trend modeling may be applied to ensure that the

correct distribution is reproduced. Trend modeling

is well established (Goovaerts, 1997; Deutsch, 2002).

The steps are as follows: (1) remove the trend a priori;

(2) stochastically model residuals; and (3) replace

the trend a posteriori. It is necessary to make a de-

cision on the scale of the trend model. A large-scale

trend captures course features and leaves the re-

maining variability to be modeled as residual, where-

as a small-scale trend also captures fine features and

leaves a smaller residual component. The results, by

construction, reproduce the trend. The results of

applying trend modeling to vertical porosity in the

wells from North Cowden field are illustrated in

Figure 5.

Figure 8. An example of polygonal declustering applied to the histogram of average porosity from a clustered subset of
37 wells in the North Cowden field. Left: the polygons of influence used to assign data weights. Right: the weighted
histogram. Average porosity is given in percent.

Figure 7. An example of cell
declustering applied to the
histogram of average porosity
from a clustered subset of
37 wells in the North Cowden
field. Top left: the clustered
subset of wells with the de-
clustering cell size illustrated.
Top right: the naı̈ı̈ve, equally
weighted, histogram. Bottom
left: the declustered mean vs.
cell size. Bottom right: the
weighted histogram. Average
porosity is given in percent.

AQ5
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Both advantages and disadvantages exist to this

technique. One advantage is that the simulation step

may be simplified because cosimulation is not neces-

sarily required to integrate the soft information. Fur-

ther, the use of trend modeling has a direct impact on

the level of uncertainty inherent in the full reservoir

model. The trend modeling procedure entails a de-

composition of each reservoir property of interest

into deterministic and stochastic components that

leads to a reduction in overall model uncertainty.

The major disadvantage of trend modeling is that

data constraints are not intrinsically honored. For

example, a porosity model may have negative po-

rosity values after the addition of trend and residual

components.

Although this technique corrects the trend fea-

tures, no direct control over the resulting histogram

is present. Introducing a trend with collocated co-

kriging or Gaussian simulation and a local variable

mean model amounts to changing the locations of

relative high and low values but not the actual his-

togram because the data are transformed. Hence,

care should be taken in the trend-modeling phase to

insure that the mean of the residuals is close to 0.0

and the correlation between the trend components

and residuals is close to 0.0.

Another technique is to use soft (secondary) data

that are representative of the entire area of interest,

along with an understanding of the relationship be-

tween the primary and soft (secondary) data to ad-

just the primary distribution (Frykman and Deutsch,

1998). This adjusted distribution is used as a refer-

ence for the subsequent simulation of the primary

variable. The underlying relationship between the

primary and secondary data may be inferred from

geologic information or other analog data, but it com-

monly may not be observed directly. Observable or

not, such a relationship between the soft (secondary)

and primary data, expressed as the bivariate distri-

bution f̂x;yðx; yÞ, must be established for debiasing.

A variety of techniques can be used to establish

this bivariate distribution. The simplest and most

flexible approach is to empirically construct data

pairs that describe the relationship without regard to

some form of calibration or prediction process. For

each pair, a weight is then assigned to the primary

data value based on the secondary data distribution.

Another method is to calculate a series of con-

ditional distributions of the primary data given the

secondary data, fprimaryjsecondary, over the range of

the collocated secondary values. This relationship

can be extrapolated over the range of all secondary

data by a bivariate trend. The primary distribution

is then constructed by scaling the binned bivariate

relationship with respect to the secondary distribu-

tion. This is a discrete approximation to the primary

distribution as expressed in equation 4.

fyðyÞ ¼
Z

x

fxðxÞ � fyjxðyjxÞdx ð4Þ

The debiasing method explicitly adjusts the global

distribution and retains consistency by employing the

secondary data as collocated data in the simulation.

This results in direct control over the shape of the

histogram, through a reference distribution, and in-

direct control over trend reproduction through the

secondary data. The method has been successfully

applied in a recent reservoir modeling case study

(Vejbæk and Kristensen, 2000).

To illustrate the debiasing technique, a subset of

38 wells was chosen from the 62 wells in North Cow-

den field such that the low-porosity regions were not

sampled (see the top left of Figure 9). Available seis-

mic information was used as a representative data

source to aid in inferring the entire porosity distri-

bution (see top right of Figure 9). A potential bivar-

iate relationship is indicated on the scatter plot of the

porosity from the 38 spatially biased wells and the

collocated seismic attribute (see center of Figure 9).

The debiased porosity distribution is established by

applying equation 4. The original biased distribution

and the resulting debiased distribution are shown

on the bottom left and right of Figure 9, respectively.

Trend modeling and debiasing yield different re-

sults for integration into the full reservoir model.

With trend modeling, the geostatistical simulation is

augmented by information concerning the spatial

behavior of the primary variable. Debiasing, however,

relies on information concerning a more representa-

tive collection of secondary data and its relationship

to the primary data. Data quality and sufficiency is

key to the successful application of both methods,

and the use of both methods has an impact on the

uncertainty associated with the full reservoir model.

PARAMETERS FOR
OBJECT-BASED MODELING

Facies models constructed with object-based tech-

niques reflect the well-defined parametric shapes

used as input. These shapes include channels, levees,

Representative Input Parameters for Geostatistical Simulation 9



crevasse splays, ellipsoidal concretions or remnant

shales, barchan dunes, beach sand bars, submarine

fans, and so on. Provided the parametric shape is

relevant to the reservoir, object-based models are

very appealing. Semivariogram-based facies models

cannot represent shapes. However, they may be ap-

propriate in settings where there are no clear shapes,

as in the case of many carbonate reservoirs or dia-

genetically controlled facies.

The input shapes are commonly based on a con-

ceptual geologic model and are not directly observed

with reservoir data. There are notable exceptions

where channel forms are sometimes observed in

seismic reflections and wells intersect geologically

well-defined rock types. Little can be done to vali-

date the representativeness of estimates of model

parameters such as these derived from a conceptual

model. Therefore, it is important that the full range of

shapes and sizes be considered.

The extent of various reservoir components must

be evaluated in conjunction with the estimated shapes

to arrive at unbiased size estimates. Consider the

Figure 9. An example of debiasing applied to a spatially biased subset of 38 wells in the North Cowden field.
Top left: the spatially biased subset of wells. Top right: the representative secondary soft data (seismic attribute).
Center: the scatter plot of the average porosity data and the collocated seismic data illustrating the bivariate
relationship. Bottom left: the naı̈ı̈ve histogram of the spatially biased subset. Bottom right: the debiased histogram
based on the seismic distribution and the bivariate relationship. Average porosity is given in percent.
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problem of inferring channel thickness from ob-

served intersections in wells. Because the maximum

channel thickness is the default value in most chan-

nel modeling software, and because channels are then

determined on the basis of some postulated cross

section, the intersections in wells may be thinner

than anticipated. They intersect the margin of an

abandoned channel, or the channel may have been

eroded. Of course, the channels may also have amal-

gamated, leading to the possibility of choosing an

erroneously large thickness. Consequently, all avail-

able information and expert judgment must be em-

ployed to estimate appropriate input distributions.

ANALOG DATA FOR
THE SEMIVARIOGRAM

The semivariogram and other spatial parameters

are commonly difficult to estimate because the wells

are too sparse or widely spaced. This does not de-

tract from the importance of geostatistics. On the

contrary, it makes the methodological choices even

more important. Every numerical model has implicit

(hidden from the modeler and beyond their control)

or explicit spatial statistical controls that must be

considered.

A reliable horizontal semivariogram is particu-

larly difficult to establish because the experimental

horizontal semivariograms are commonly too noisy

to interpret. However, the goal is to describe and

represent the underlying phenomenon as accurately

as possible and not necessarily to obtain the best

possible fit of the semivariogram. To do so, second-

ary information in the form of horizontal well data,

seismic data, conceptual geological models, and ana-

log data must be considered; and expert judgment

must be used to integrate global information from

analog data with sparse local data. In all cases, a

systematic approach to the semivariogram interpre-

tation is required (Gringarten and Deutsch, 2001).

In the absence of sufficient horizontal data, a hor-

izontal semivariogram may be inferred by (1) deter-

mining the fraction of the variance that is explained

by zonal anisotropy (i.e., stratification that leads to

persistent positive correlation in the horizontal di-

rection) and then (2) establishing the horizontal-to-

vertical anisotropy ratio based on secondary data.

The inferred horizontal semivariogram consists of

the zonal anisotropy (step 1) and the scaled vertical

semivariogram. Deutsch (2002) has published a table

of typical anisotropy ratios that may aid in establish-

ing the ratio of horizontal to vertical anisotropy.

Figure 10 illustrates the relationship between these

two types of anisotropy. Both the zonal anisotropy

contribution and the horizontal-to-vertical anisotro-

py ratio have considerable uncertainty, which should

be investigated via a sensitivity study and/or geosta-

tistical simulation (Deutsch, 2002).

SIZE SCALING

The input model parameters must also be con-

sistent with the support size of the model. Sample

data are sparse ly, if ever, available at the support

size of the model; therefore, the input values must

be explicitly adjusted to reflect the support size prior

to geostatistical simulation. Variances and semivar-

iograms change with respect to well-understood

scaling laws (Frykman and Deutsch, 2002). Figure 11

illustrates how a change in support size affects the

histogram, variance, and semivariogram of porosity.

A change in the variance with respect to support

size is characterized by a difference in semivario-

grams given by equation 5.

D2ðv;VÞ ¼ gðV;VÞ � gðv; vÞ ð5Þ

This equation states that the variance of volumes v

within the larger volume V is the average point-

scale semivariogram within the larger volume minus

the average point scale semivariogram within the

smaller volume.

The required correction in variance is applied to

the input histogram prior to geostatistical simulation

Figure 10. A schematic illustration of the zonal anisot-
ropy contribution and the horizontal-to-vertical anisot-
ropy parameters required to infer a horizontal semivario-
gram in the absence of reliable horizontal experimental
semivariograms (Deutsch, 2002).

Representative Input Parameters for Geostatistical Simulation 11



by techniques such as affine and lognormal correc-

tion. The nugget effect, variance contribution, and

range are corrected for change in support size,

respectively, as follows:

Co
V ¼ Co

v �
jvj
jVj ð6Þ

Ci
V ¼ Ci

v

1 � gðV;VÞ
1 � gðv; vÞ ð7Þ

ai
V ¼ ai

v þ ½jVj � jvj� ð8Þ

In the above equations, the large V represents the

block scale, and the small v represents the data scale.

For example, in equation 6, jVj is the physical size in,

say, cubic meters; and in equation 8, jVj is the size

of the domain in a particular direction. The range

values in equation 8 are different in different direc-

tions, and they are affected by the original small-

scale ranges as well as the geometry of the blocks

under consideration.

UNCERTAINTY IN HARD
AND SOFT DATA

Log-derived facies and porosity values are inter-

pretations of (error-prone) wire-line measurements.

Uncertainty thus derives from both the gathering

and the interpretation process. More and more, prac-

titioners are realizing that well data, generally con-

sidered hard in geostatistical simulation, have a cer-

tain degree of softness that must be considered in the

modeling exercise. Similarly, secondary data sources

(geological maps and seismically derived attributes)

that are considered as soft data limit stochastic sim-

ulation by removing a great deal of spatial vari-

ability from one realization to the next. It is impor-

tant from a modeling point of view to account for

variability in secondary data by considering mul-

tiple net-to-gross maps, multiple seismic attributes,

or multiple representations of other such reservoir

facets.

Figure 11. An example
of the effect of change
in support size on the var-
iance and the semivario-
gram. Note the decrease in
variance and semivario-
gram sill and increase in
semivariogram range
with increase in support
size. Porosity is given
in percent.
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UNCERTAINTY IN THE
INPUT PARAMETERS

Modern geostatistical reservoir modeling consists

of generating realizations of all critical spatial pa-

rameters. The spatial parameters may include the top

structure, the thickness, the facies, porosity, and per-

meability. These parameters are commonly modeled

hierarchically; for example, facies identification de-

pends on structure, porosity depends on the identi-

fication of facies, and permeability depends on po-

rosity. The number of realizations depends on the

goals and the available computing and professional

resources. Typically, 10–200 realizations are gener-

ated. A common approach is to produce several reali-

zations independently and to avoid creating multiple

facies models within a specified structural framework,

multiple porosity models for a given facies model,

and so on. The resulting set of L realizations could

be denoted as

ftoplðx; yÞ; thklðx; yÞ; facieslðx; yÞ;
porlðx; y; zÞ; permlðx; y; zÞg;
l ¼ 1; . . . L ð9Þ

where x, y, and z represent the areal and strati-

graphic coordinates. Different deterministic and geo-

statistical simulation techniques may be used to con-

struct the realizations (estimates) of each parameter.

In addition, the realizations (estimates) generated for

each parameter must encompass the range of pos-

sible input model parameters. For example, the net

sand proportion may initially be set to 0.6; whereas

it could very well fall between 0.5 and 0.7 because of

limited well data. Nonetheless, whereas the different

facies realizations may reflect a range of results, the

practical difference between them is commonly quite

small. As previously suggested, the ergodic fluctua-

tions between realizations depend more on the size

of the domain relative to the range of correlation than

on the actual uncertainty in the parameter.

The operational flow of the simulation process

proceeds as follows. An empirical or theoretical dis-

tribution is established for the estimates of each in-

put model parameter, or an empirical histogram is

produced. A value is selected at random from this

distribution to be used in each realization. For ex-

ample, the sand proportion could be modeled as a

triangular distribution with a minimum of 0.5, a mode

or 0.6, and a maximum of 0.7. A new target propor-

tion would be drawn from this distribution for each

realization. This basic idea, which is analogous to the

Monte Carlo simulation, has been around for many

years (Haldorsen and Damsleth, 1990) and is imple-

mented in various software packages used for geo-

statistical modeling.

Note that the distribution of the estimates of each

parameter must be established or postulated on the

basis of concomitant information. Ideally, the choice

derives from expert knowledge. For example, the

project geologist chooses the range of object sizes;

the geophysicist selects the range of correlation be-

tween acoustic impedance and porosity; the engineer

determines the uncertainty in an interpreted well test

k � h, and the geostatistician decides the minimum,

most likely, and maximum semivariogram range. In

the absence of expert knowledge, some quantitative

tools help establish the uncertainty in certain param-

eters. The bootstrap methodology (Efron, 1979) is one

such approach.

THE BOOTSTRAP APPROACH

The bootstrap approach can be used in certain

cases to assess the uncertainty in an input param-

eter. Given n data values from which a statistic s is

calculated, additional sets of n data values are pro-

duced by sampling the original n values with re-

placement (e.g., using a Monte Carlo sampling pro-

cess). The statistic s is calculated for each new set of

n values, with the process being repeated a large

number of times (on the order of 1000). The values

of the statistic s computed for each of the new data

sets are denoted s0 to distinguish them from the

original value of s. The empirical distribution of s0 is

then used to approximate the unknown distribution

of s. Efron (1979) discusses the reasonableness of

using such an approximation.

Consider the crossplot of vertical average poros-

ity and seismic energy for the wells in North Cow-

den field shown in Figure 12. The correlation co-

efficient is calculated to be 0.62. Being a sample

statistic, this value has uncertainty associated with

it. Clearly, the uncertainty would be greater if there

were only three wells, and the uncertainty would be

less with more wells. The histogram on the right of

Figure 12 is an empirical distribution of the corre-

lation coefficient resulting from the bootstrap of pairs

that can subsequently be carried through successive

modeling steps.
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An estimate of the correlation coefficient is sim-

ply selected at random from this distribution each

time a geostatistical realization (estimate) of average

porosity is produced.

Two important assumptions are implicit to the

use of the bootstrap: (1) the data are independent,

and (2) the data histogram is representative. The

issue of data representativeness has been previously

addressed, and the steps proposed there should be

undertaken prior to implementing the bootstrap pro-

cedure. The assumption of data independence is

much more difficult to resolve. Although wells in

fields are commonly widely spaced making the in-

dependence assumption seem reasonable, core or

well-log data from within a single well is closely

spaced, and the values of reservoir properties they

represent certainly may not be independent.

UNCERTAINTY IN
THE SEMIVARIOGRAM

The semivariogram has a direct influence on the

spatial arrangement of the petrophysical properties

in a geostatistical reservoir model, but it does not

directly affect the static resource. The level of model

spatial variability, as modeled by the semivariogram,

indirectly affects sweep efficiency and recovery. The

semivariogram also affects the nature of ergodic fluc-

tuations; for example, a larger range of correlation

implies greater ergodic fluctuations. For these rea-

sons, it is necessary to account for the uncertainty in

the semivariogram and other spatial controls.

Uncertainty in the semivariogram may be assessed

by expert judgment or by comparison to analogs

representing similar depositional settings. The un-

certainty in the semivariogram may also be esti-

mated directly from the data as demonstrated by

Ortiz and Deutsch (2002). For example, consider the

experimental standardized normal-score semivario-

gram of average porosity in the 62 North Cowden

wells (Figure 13). The experimental semivariogram

is very noisy because of limited data, and so the

choice of a final model (curve) will not be very pre-

cise. To address this situation, it is possible to con-

struct a distribution of semivariogram ranges, as

shown in Figure 13, so that for each realization, a

semivariogram range is drawn at random from this

distribution. This procedure transfers the uncer-

tainty about the form of the semivariogram model

(curve) to the full reservoir model.

Figure 12. An example of the bootstrap applied to the correlation coefficient between average porosity and a seismic
attribute for all 62 wells in North Cowden field. Left: the scatter plot between porosity and the seismic attribute.
Right: the distribution of correlation coefficients from 1000 bootstrap iterations.

Figure 13. Uncertainty in the semivariogram. The ex-
perimental semivariogram (red dots) and three possible
semivariogram models (curves) that encompass a possi-
ble distribution of the semivariogram range based on
the experimental semivariogram.
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BEST PRACTICES

The following steps constitute the recommended

workflow for the assembly of inputs to stochastic

models:

1) Review all data.

2) Assemble the most representative data.

3) Compute appropriate statistics with which to

estimate all reservoir parameters.

4) Generate realizations of the full reservoir model.

For the purpose of generating realizations of the

full reservoir model that express the uncertainty in

the input statistics, it is recommended that multiple

realizations of each property be produced, and that

these realizations be linked as illustrated in Table 1

and described in equation 9. The important idea is that

any realization of one reservoir property (e.g., po-

rosity) may be dependent on the preceding realization

of another (e.g., facies). Sensitivity analysis should be

undertaken to evaluate the overall impact of each pa-

rameter. A sensitivity study can be performed by

varying a single parameter while holding the others

constant. This identifies key controlling parameters for

which uncertainty in the input values must be refined

to minimize uncertainty in the full reservoir model.

SUMMARY

The assembly of representative data is extraor-

dinarily important to reservoir modeling; the input

statistics will be reproduced regardless of how rep-

resentative they are of the underlying distributions;

sound geological interpretation of major subsurface

features and trends is a key step; they will not be

reproduced by chance in the resulting geostatistical

realizations. Interpretive and analog information must

be incorporated to ensure use of the most accurate

and precise statistics, such as the histograms and

semivariograms.

Uncertainty in the input statistics must be explic-

itly integrated into the full geostatistical reservoir

model. Variation between realizations of this model

is a function of the ratio of domain size to the range of

correlation and not of the level of certainty in the

input statistics. Uncertainty in the input statistics

must be quantified by expert judgment and, where

possible, by use of tools such as the bootstrap. This

uncertainty may be imparted to the full reservoir

model by varying the estimates of the model param-

eters according to their sampling distributions.
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Table 1. Identification of reservoir properties in multiple realizations of a full reservoir model.

Realization Structure Facies Porosity Permeability

l = 1 Structure 1 Facies 1 $f1 k1

l = 2 Structure 2 Facies 2 $f2 k2

. . . . . . . . . . . . . . .

l = L Structure L Facies L $fL kL
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